School of Chemistry Faculty of Science University of the Punjab, Lahore Course Outline

BS Chemistry Semester-I					
Programme	BS (Chemistry)	Course Code	Chem- 116	Credit Hours	2
Course Title	ourse Title Fundamental Concepts of Chemical Bonding Course type Major			Major	

Course Introduction

The course is organized to provide an adequate knowledge about nature and type of chemical bonding in inorganic molecules. Here is a brief description of course outlines:

Types of chemical Bonding, theories of chemical bonding, and prediction of molecular shapes VSEPR model followed by VB theory (Hybridization, Resonance etc.,) explanation of the structure of AB₂, AB₃, AB₂E, AB₄, AB₃E, AB₂E₂, AB₅, AB₃E₃, AB₆, AB₅E, AB₄E₂, AB₇, AB₆E, AB₈ and AB₉ type molecules. Discussion of molecular orbitals and molecular structures of homonuclear molecules and ions, heteronuclear diatomic and polyatomic molecules and ions. Bent bond, bridge bond, four electrons-three centre bond. Polarization of ions, Fajan's rules and its applications. Intermolecular forces e.g. Van der Waals forces and hydrogen bonding. Metallic bond on the basis of band model, Conductors, Semi-conductors and insulators

Learning Outcomes

Upon successful completion of the course, the student will be able to:

- 1. Acquire the basic knowledge of determining shapes of molecules.
- 2. Understand about intermolecular forces, bent bond and bridge bond.
- 3. Understand the nature of bonding in various inorganic molecules

	Course Content	Assignments/Readings
Week 1	Introduction of Chemical bonding and types of	Reading from recommended material
	chemical bonding	Problem solving practice
Week 2	Theories of chemical bonding, and prediction of molecular shapes	Reading from recommended material
	VSEPR model (AB ₂ to AB ₄)	Problem solving practice
Week 3	Theories of chemical bonding, and prediction of molecular shapes	Reading from recommended material
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VSEPR model (AB ₅ to AB ₉)	Problem solving practice
Week 4	Theories of chemical bonding, and prediction of molecular shapes	Reading from recommended material
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VBT model (AB ₂ to AB ₄)	Problem solving practice
***/!- <i>5</i>	Theories of chemical bonding, and prediction of	Reading from lecture
Week 5	molecular shapes VBT model (AB ₅ to AB ₆)	Problem solving practice
	Theories of chemical bonding, and prediction of	Reading from lecture
Week 6	molecular shapes VBT model (AB ₇ to AB ₉)	Problem solving practice
Week 7	Discussion of molecular orbitals and molecular structures of homonuclear molecules	Reading from recommended material

		Problem solving practice	
Week 8	Discussion of molecular orbitals and molecular structures of heteronuclear diatomic and polyatomic	Reading from recommended material	
	molecules and ions.	Problem solving practice	
Week 9	Mid term Assessment		
Week 10	Bent bond, bridge bond, four electrons-three centre	Reading from lecture	
week 10	bond.	Problem solving practice	
Week 11	Polarization of ions, Fajan's rules and its	Reading from lecture	
Week 11	applications.	Problem solving practice	
Week 12	Intermolecular forces e.g. Van der waals forces and	Reading from lecture	
Week 12	hydrogen bonding.	Problem solving practice	
Week 13	Metallic bond on the basis of band model	Reading from recommended material	
		Problem solving practice	
Week 14	X-ray spectra and N(E) curves, n(E) curves. Binding	Reading from lecture	
Week 14	energy in metals, conductors, semi-conductors and insulators.	Problem solving practice	
Week 15	Effect of temperature and impurities on	Reading from lecture	
week 15	conductivity.	Problem solving practice	
Week 16	Revision of overall aspects of bonding	Reading from recommended material	
		Problem solving practice	

Textbooks and Reading Material

- 1. Cotton, F, Albert, Goeffrey Wilkinson and Paul L. Gaus, (1995), "*Basic Inorganic Chemistry*", John, Wiley & Sons Ine, 3rd Edition.
- 2. Jolly, William, L., (1991), "Modem Inorganic Chemistry", McGraw Hill, 2nd Edition.
- 3. Lee, J.D., (1996), "Modem Inorganic Chemistry", Champan & Hall, 5th Edition.
- 4. Shriver, D.F., P.W. Atkins and C.H. Langford, (1996), "*Inorganic Chemistry*", Oxford, 2nd Edition.
- 5. Ullah, S., (2020) "Inorganic Chemistry", Ilmi Kitab Khana, Lahore.
- 6. Rehman, R., and Bhatti, H.N., (2017), "Advanced Inorganic Chemistry", Volume I, Carvan Book House Lahore.

Teaching Learning Strategies

- 1. Lecture Based Examination (Objective and Subjective)
- 2. Assignments
- 3. Class discussion
- 4. Quiz
- **5.** Tests

Assignments: Types and Number with Calendar

- 1. Applications of VSEPR, VBT and MOT.
- 2. Metallic bonding theories/Bent bond/Bridge bond/Semiconductors applications.

	Assessment			
Sr. No.	Elements	Weightage	Details	
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.	
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.	
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.	

BS Chemistry Semester-I					
Programme	BS (Chemistry)	Course Code	Chem-117	Credit Hours	1
Course Title Inorganic Chemistry Lab		Course type	Major		

Course Introduction

This will help the students to analyze halide ions and oxidizing samples purity in commercial samples. Here is a brief description of course outlines:

Argentometric Titrations:

Determination of amount/L of Cl⁻ by Mohr's Method.,

Determination of amount/L of Br by Mohr's Method., Determination of amount/L of Cl by Volhard's Method., Determination of amount/L of Br by Volhard's Method., Determination of amount/L of Cl by Adsorption Indicator Method (Fajan's Method).,Determination of amount/L of Br by Adsorption Indicator Method (Fajan's Method).

Iodine Titrations:

Iodimetry: Determine the amount of Iodine dissolved in water using $Na_2S_2O_3$., Determine the amount/L of KI by Iodometry. Determine the amount/L of Cu^{2+} by Iodometry. Determine the amount/L of $NaAsO_2$ by Iodometry. Determine the amount/L of NaOCl by Iodometry. Determine the amount/L of H_2O_2 by Iodometry.

Learning Outcomes

On the completion of the course, the students will:

- 1. How to analyze chloride and Bromide in any aqueous samples.
- 2. How to check the purity of Copper sulphate used in agriculture and industrial plants.
- 3. How to check the purity of bleaching samples used in wastewater treatment plants.

	Course Content	Assignments/Readings
Wools 1	Introduction of Argentometry.	Solution preparations
Week 1		Lab testing practices
W. I O	Determination of amount/L of Cl- by Mohr's	Solution preparations
Week 2	Method.	Lab testing practices
XX . 1 2	Determination of amount/L of Br- by Mohr's	Solution preparations
Week 3	Method.	Lab testing practices
Week 4	Determination of amount/L of Cl- by Volhard's	Solution preparations
	Method.	Lab testing practices
*** 1 5	Determination of amount/L of Br- by Volhard's	Solution preparations
Week 5	Method.	Lab testing practices
XX 1 6	Determination of amount/L of Cl- by Fajan's	Solution preparations
Week 6	Method.	Lab testing practices
***	Determination of amount/L of Br- by Fajan's	Solution preparations
Week 7	Method.	Lab testing practices

Week 8	Pavisian and practice of argentemetric titrations	Solution preparations
vveek o	Revision and practice of argentometric titrations.	Lab testing practices
Week 9	Mid term assessment	
XX 1 10	Iodimetry: Determine the amount of Iodine	Solution preparations
Week 10	dissolved in water using Na ₂ S ₂ O ₃ .	Lab testing practices
Wools 11	Determine the amount/L of VI by Indometry	Solution preparations
Week 11	Determine the amount/L of KI by Iodometry.	Lab testing practices
Week 12	Determine the amount/L of Cu ²⁺ by Iodometry.	Solution preparations
WEEK 12		Lab testing practices
Week 13	Determine the amount/L of NaAsO ₂ by Iodometry.	Solution preparations
WEEK 13		Lab testing practices
Week 14	Determine the amount/L of NaOCl by Iodometry.	Solution preparations
week 14	Determine the amount E of NaOC1 by fodometry.	Lab testing practices
Week 15	Determine the amount/L of Ca(OCl)Cl by	Solution preparations
WEEK 15	Iodometry.	Lab testing practices
Week 16	Determine the amount/L of H ₂ O ₂ by Iodometry.	Solution preparations
WEEK 10		Lab testing practices

Textbooks and Reading Material

- 1. Vogel, Arthur I. (2013), "A Text-Book Of Quantitative Inorganic Analysis-Theory And Practice". Longmans, Green And Co.; London; New York; Toronto.
- 2. Rehman, R., and Bhatti, H.N., (2015), "Experimental Inorganic Chemistry", Carvan Book House Lahore.
- 3. Monim Mehboob, M., Arshad. M., and Rehman, A., (2022), "Laboratory manual Inorganic Chemistry" by Leads Publishing Co.
- 4. Rehman, R., and Bhatti, H.N., (2017) "Advanced Experimental Inorganic Chemistry" Carvan Book House Lahore.
- 5. Mendham, J., (2006), "Vogel's textbook of quantitative chemical analysis". Pearson Education India.

Teaching Learning Strategies

- 1. Lecturing
- 2. Written Assignments
- 3. Lab work

Assignments: Types and Number with Calendar

- 1. Argentometry and its applications
- 2. Iodine titrations and their applications

	Assessment				
Sr. No.	Elements	Weightage	Details		
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.		
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.		
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.		